
7?m 9@2 A M-OEi R DESCRIPTION FOE fOO(U) NIR FORCE INST OF vi
TECH WIOHT-PRTTERSCN 039 ON SCHOOL OF EIEERIN
R-A FLOWERS DEC 86 AFIT/OCE/ENLIMO-9

ICLASSIFIED, F/S 9/2 I..

smmhhhhhhhhhh

IIII Wl 12.2

-4.ROCOPY RESOLUTION TEST CHART

'. AFIT/GCE/ENG/86D

0

DTIC
ELECT

D

tip A W-GRAMMAR DESCRIPTION FOR ADA

THESIS

Roy A. Flowers
First Lieutenant, USAF

AFIT/GCE/ENG/86D-9

Approved for public release; distribution unlimited

..e4.r

- !I

,o .- o'
P.

AFIT/GCE/ENG/86D-9

A W-GRAMMAR DESCRIPTION FOR ADA

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Acct--ion For
NTIS CRA&I

01IC TAB
U .rno cd]

B y
By

Ds. ibutior
Roy A. Flowers, B.S.E.E

Avaislbility Codes

First Lieutenant, USAF Avail" and Ior
Dist Sp cal

JI
December 1986

Approved for public release; distribution unlimited

.1* d

• . - . .. • % -. , o , o -.- , ° . , o

Preface

This thesis presents a method for describing the syntax and static

semantics of Ada in terms of a W-grammar. The original goal was to

create a replacement for the Ada Language Reference Manual. In MT

opinion, the W-gramars fall short of this goal since they are less

readable than BNF for determining Ada's syntax, and experience shows

that programmers most often refer to references to answer questions

about syntax.-

However, a W-grammar description of Ada is still useful to computer

scientists who need more than a simple understanding of the syntax and a

rudimentary description of the semantics. A formal semantic definition

of Ada is needed by system designers for multiple targets, by compiler

designers, and by individuals needing formal correctness proofs of Ada

programs. -

This thesis could not have been completed without the cooperation

and help of others. I would like to thank the members of my thesis

committee, Lt Col Seward and Maj Woffinden, for their comments and

suggestions which have improved this document 1000% since the first

draft. And a special thanks to Capt Jim Howatt, my thesis advisor, who

must by now have memorized every word. These people are the special

kind of people who make AFIT the institution it is, and I'm proud to

have been a part of it. Finally, thanks to my wife, Nancy, who was

always there to support me even when I was so busy it seemed I had

forgotten her.

Roy A. Flowers

ii

IK~~9F 4 U"r7 I 1 rr rig f I IN 7A . 7-. jrj.. -~ V- b ~ ~

Table of Contents

Page

Prefacei

List of Figures v

List of Tables * v

Abstract vi

I. Introduction and Literature Review 1

Background 1
The Problem 3

Syntax vs. Semantics # * * * 3
Purpose of the Study4
Benefits of the Study 4

Scope e........... 5

SummaryofCurrent Knowledge * . o * * . 5
The Chomsky Hierarchy 5
Backus-Naur Form 10
Semantic Definition Languages 11
W-Grammars 13
Summary . 14

Approach 14
Document Overview 15

II. Description of W-grammars 16
Introduction 16
Terminology 16
An Analogy 18 .
Uniformeplacement Rule o o o 18
A Finite Example 19
A W-grammar for an Infinite Language 20
W-grammar Summary 21

III. W-grammar A 22

The Initial Translation 22
The W-grammar Tools 23
An Example 23
Italicized Names 26

iii

6

Page

IV. W-grammar B 28

Introduction 28
W-grammr B in Relation to W-grammar A 28
The Ada Program Concept 29
LIBRARY 29
The Development ofWGrmar 35

New Tools in W-Grammar B 35
The Ada Subset 37

Summary 39

V. Conclusion* 40

Ada Constructs Not Covered in W-gramar B 40
Generics 40
Tasks 41
Overloading 41

Areas for Further Study 42
Thesis Summary 43

Appendix A: W-grammar A 45

Appendix B: W-grammar B 63

Bibliography . 69

Vita 71

.I

I

!4

iv

iU

:V ' .:Z

%.

* ~ ~ ~ ~ ~ ~ ~ ~ ~ --V . 7y-. y U J U w -1 -'L -- 1.. T1wg O-

List of Finures

Figure Page

1. A Type 3 Grammar for Ada Identifiers 7

2. A Type 2 Grammar for Ada Identifiers 8

3. The Chomsky erarchy......... 10

4. Some Hypernotions Used in W-grammar A 22

5. W-grammar B Development 35

List of Tables

Table Page

(iI I. Italicized Terms in the Ada Language Reference Manual . . 26

II. Ada Constructs Included in W-grammar B 37

III. Compound Delimiters in W-grammar A 46

d osct c i

%I

AFIT/GCE/ENG/86D-9

Abstract

This thesis explores the formal definition of the syntax and static

semantics of the Ada programming language. Several notational forms

were compared and the particular notational form chosen is a double

level grammar called the the W-grammar. W-grammars were first used in

the formal definition of Algol 68. Two W-grammars are presented. The

first W-grammar is a translation of the modified BNF notation used in

the Ada Language Reference Manual, and the second demonstrates the

description of Ada's static semantics in W-grammar format.

v
NN

vit

'% " ., " % ,% - ".-" ,,% .% w % =" ., ° . . . N..

A W-GRAMMAR DESCRIPTION FOR ADA

I. Introduction and Literature Review

Background

A common complaint about the Ada language is its complexity. The

claim that Ada is complex is borne out by the empirical evidence that

the first production quality compilers were not available until over

four years after the language specification was complete.

Ada's complexity stems from its sheer size as well as its advanced

language constructs (14:4). Ada incorporates most of the modern

programming concepts of Algol 68, CLU, Modula, Modula-2, and Pascal in a

single programming language. The language structures pioneered by these

60.

languages include block structure, strongly typed data structures,

separately-compiled code modules, and generic program units. To this

already large number of relatively new programming ideas, Ada adds

tasking, and the concept of identifier overloading-where a single

identifier can have more than one meaning based on its context. It is

true that none of the ideas are original with Ada, but attempting to

combine so many new ideas into a single language has not been tried

since PL/I, and at that time there were far fewer constructs to

consolidate.

Ada is a registered trademark of the U.S. Government (Ada Joint

Program Office).

. ' '"., ." - , . • , -:-.... . 5 .

As modern as the language Ada is, the Ada Language Reference Manual

still uses a modified Backus-Naur Form (BNF) meta language notation for

the syntax, along with prose descriptions of the semantics (5:1-7 and

1-8). BNF was developed to describe ALGOL, one of the earliest

programming languages of all.

An example of the complexity of this methodology for language

description can be drawn from the definition of the context-clause in

Section 10.1.1 of the Language Reference Manual (5:10-2 and 10-3). The

contextclause defines the environment of the current source program and

is used to import publicly visible objects from other program units.

The BNF description of contextclause found in the Language

Reference Manual is as follows:

contextclause ::= (withclause (useclause})

12 withclause ::= with unit simplename (, unitsimple name);

These two BNF statements are then followed by four paragraphs describing

the semantics of the statements. Not until the fourth paragraph is the

user told that 'unit simplename' must name a previously-compiled

library unit. The problem with the Language Reference Manual

description is not that BNF is too antiquated for language definition,

but that English is too imprecise a language for semantic

specifications.

If English were unambiguous there would be no problem with English

language specifications for Ada's syntax and semantics, but in fact the

ambiguity of English is one of the largest contributors to the

proliferation of the legal profession. English is the weakest part of

2

the Ada language specification, and Ada gurus are often referred to as

"Language Lawyers."

The Problem

Syntax vs. Semantics. Compiler developers usually view a

programming language from the two aspects of syntax and semantics.

Syntax is the mechanical way tokens (the language symbols) are combined

to form well-structured language constructs. Semantics is the meaning

carried by a language phrase. Semantics can be broken down into two

types: static and dynamic.

Static semantics are often hard to distinguish from syntax. As an

example consider a simple English sentence with the syntax rule "subject

verb object period." The syntax allows such nonsense sentences as "Dog

are car. and "House bleeds her." The static semantics of the same

0 sentences require subject-verb agreement between dog and are, and

prohibit intransitive verbs like bleeds in this context. In the

examples, neither "House bleeds her." nor "Dog are car." would be "

acceptable to the static semantic rules. Static semantics are often

referred to as context-sensitivity.

Even with the syntactic and static semantic rules above, sentences

of the form "subject verb object" can be formed which are nonsensical

such as "Dog is house." The dynamic semantics, the abstract meanings of

the sentence, eliminate tae rest of these nonsense "sentences."

For a programming language, the syntax describes valid identifiers

and statements, static semantics describe valid blocks and programs, and

dynamic semantics describe what happens when a program is run.

3

',_ Z a

..

Several methods for describing syntax and semantics are discussed

later in this chapter.

Purpose of the Study. This study will consider ways to reduce

the complexity of the Ada language description by exploring the

definitions of Ada in terms of a formal grammar powerful enough to not

only reflect a language's syntax, but its semantics as well (both static

and dynamic). By using such a grammar to describe both the syntax and

semantics formally, we can remove the ambiguity and thus reduce the

complexity of English descriptions of the semantics. The type of

grammar chosen is the W-grammar (4:46). W-grammars are discussed

further in the summary of current knowledge.

Benefits of the Study. Expected benefits of a W-grammar

definition for Ada include:

C1 1. A more concise Language Reference Manual. W-gramar

definitions have been shown to be smaller than equivalent context-free

grammar definitions (4:52-53).

2. A more precise Language Reference Manual. Expressing Ada's

semantics formally reduces the inherent ambiguities of English (13:437).

3. Better and more consistent compilers. The Language Reference

Manual is the basic compiler requirements document. With a better

requirements definition, compiler quality should improve.

4. The possibility of a true Ada compiler-compiler rather than

just parser generators (13:437).

5. A better understanding of Ada semantics and a basis for

further language improvements.

.... FIN

4

e,

.1.~6 . .-

Each of these expected benefits has ramifications to the Air Force and

the Department of Defense as a whole, but of special importance are 2,

3, and 4 which are directly related to the ongoing issues of Ada

portability and Ada program reliability.

Scope 5

This study attempts to begin a formal definition of the Ada

programming language syntax and static semantics by creating a W-grammar

description of Ada.

Specifically not covered by this study is compiler generation from

the W-grammar description. The purpose of this study is to clarify the

understanding of Ada syntax and semantics, and although potentially very

useful, a compiler generator does not fit within the stated thesis

purpose.

Portions of the standard Ada definition will not be covered in this

study--Chapters 13 and 14 of the Ada Language Reference Manual,
"Representation Clauses and Implementation-Dependent Features" and

"Input-Output". The Chapter 13 constructs are inappropriate due to the "

specific system dependencies, and the chapter 14 constructs are already

formally defined (in terms of Ada itself).

Summary of Current Knowledge

This section explores existing alternatives to the methodology used

in the Ada Language Reference Manual.

The Chomsky Hierarchy (4:9-20, 7:217-232). In the 1950s, Noam

Chomsky defined five classes of phrase structure grammars. This

classification scheme has come to be known as the Chomsky Hierarchy.

55

o-%

'-;
. °5.

of. fou fii sets:III

Phrase structure grammars are composed of four finite sets: the

terminal vocabulary Vt, the non-terminal vocabulary V n, the

production set P, and a single distinguished non-terminal symbol S

called the root of the language. The five grammar classes within the

Chomsky Hierarchy are distinguished by the forms allowed in the set of

production rules.

The most restrictive class of languages, which Chomsky did not even

name, are the Finite Languages. Production rules in grammars of this

class must be of the form S -> x , where S is the designated symbol

and x is an element of Vt , the Kleene Closure of Vt.
tt

It is easily seen that Finite Languages are simply a finite set of

designated strings. The expressive power of such languages is extremely

limited.

The next language type, Type 3, the Regular Languages have the

Finite Languages as a proper subset. These grammars have production

rules of the form A -> aB and A -> b where A and B are elements of

Vn and a and b are elements of Vt.

These languages are those accepted by finite automata and have

limited use in describing programming languages. Grammars of this type

are useful for such things as describing valid language tokens. For

example a Type 3 grammar for Ada identifiers is shown in Figure 1.

Type 2 Chomsky Languages are the Context-free Languages.

Production rules in context-free grammars have the form A -> n , where

A is an element of V and n is an element of V (V is the union
n

of V and V).
n t

.pI

Vt (a,b,c, ... ,x,y,z,A,B,C,...,X,Y,Z,O,1,2,...,7,8,9,_)

V n- (S,A)n

S ((s)

P {

S -> a, - an identifier can be a single letter

S -> b, S -> c, ... , S-> x, S-> y, S-> z,

S-> A, S-> B, S-> C, ... ,S-> X, S-> Y, S-> Z,

S -> aA, -- an identifier is a letter followed by
-- a string

-> bA, S-> cA, ..., S-> xA, S -> yA,

S-> zA, S-> AA, S-> BA, S-> CA, ... ,

S -> XA, S -> YA, S -> ZA,

A-> a, -- a string may be a single character

A-> b, A-> c, ..., A-> x, A-> y, A-> z,

A -> A, A -> B, A -> C ... , A -> X, A -> Y, A -> Z,

A-> 0, A-> 1, A -> 2, ... , A-> 7, A -> 8, A-> 9,

A->-,

A -> aA, -- a string may be multiple characters

A-> bA, A -> cA, ..., A -> xA, A -> yA,

A-> zA, A-> AA, A-> BA, A-> CA,

A -> XA, A-> YA, A-> ZA,

A -> OA, A-> 1A, A-> 2A, ... , A -> 7A,

A-> 8A, A-> 9A, A -> A

.77. Figure 1. A Type 3 grammar for Ada Identifiers.

7

These grammars, of which BNF is a member, have sufficient power to

describe the syntax of any programming language. In fact, BASIC becomes

a context-free language if user-defined functions and arrays are not

allowed. Since Type 3 languages are a subset of Type 2 we can describe

the Ada identifier in a context-free grammar, but the added power of the

context-free grammar makes the definition more concise. Figure 2 is a .z

Type 2 grammar for Ada identifiers.

Vt = (a,b,c,...,x,y,z,A,B,C,...,X,YZ,O,1,2,...,7,8,9,_

V = (S,A)

S = (s)

P ={

S-> aA, -- an identifier is a letter followed by
-- a string

S-> bA, S -> cA, ... , S -> xA, S_-> YA,

S_-> zA, S_-> AA, S -> BA, S -> CA,

S-> XA, S -> YA, S -> ZA,

A_-> AA - a string is a sequence of strings

A-> a, -- a string may be a single character

A -> b, A -> c, ... , A -> x, A -> y, A -> z,

A->A, A-> B, A-> C, ... ,A-> X, A-> Y, A_-> Z,

A 0-> , A_-> 1, A_-> 2, ... , A-> 7, A -> 8, A_-> 9,

A->

Figure 2. A Type 2 Grammar for Ada Identifiers.

8

.. U

Type 1 Chomsky Languages are the Context-sensitive Languages.

Grammars for these languages have production rules of the form

uAn -> uKn , where u and n are elements of V , A is an element of

Vn and K is an element of V+ (the Kleene Closure without the

empty string).

Context-sensitive grammars have sufficient power to enforce the

data type dependencies of programming languages and are therefore of

interest for their ability to describe programming languages. Most

useful languages are context-sensitive (7:224).

Here is a trivial Type 1 grammar from Cleaveland and Uzgalis which

describes the language anbncn where n > 0 (4:18):

It = (a, b, c)

V = (S, T, B, C, D)n

P S ->T, T -> aTBD, T -> abD, DB -> CB, CB -> CD, CD -> BD,

bB -> bb, D -> c)

Type 0 languages, the least restrictive of the phrase-structure

languages, are referred to as the Recursively Enumerable languages.

These languages are of the form K -> u , where K is an element of

V+ and u is an element of V*

There are no trivial examples of recursively-enumerable languages

which are not also context-sensitive (4:19), so no example of a strictly

Type 0 grammar will be given.

Figure 3 illustrates the relationship between the different Phrase

Structure Languages and summarizes the restrictions on the production

rules of each type.

9

°d

,pI.- S- u-T.- A- U-

PFC(UR SIVEL) UNNLAI

REGULAR

A-*p.

a-*&B

A-*

AbCV

WEV1+

&,EVS

(4:20)
Figure 1. The Chomsky Hierarchy

Backus-Naur Form (BNF). Designed by John Backus and Peter Naur,

BNF was originally used to define the ALGOL language (2:917; 8:160-162).

BNF is able to describe Chomsky Type 2, or context-free languages

(7:77-79, 227). Most context-free languages used in language

description are similar to BNF; the Ada Language Reference Manual uses a

modified form of BNF. The traditional BNF description of an Ada context

clause would be:

10

V.'
o % -' ' '. .' ". .'. .. .' ' % ' ' . '.r ' % ' . .'. .% . -'. ." -. ' % ' '. .'. ". ' '. ' '. ' .' - " . '. - .' - ._ -. . ' ., , ' . - '. " . ". .. .- .- . ; - ". ". , ',,

<context clause> ::- <context clause> <with portion> I
<with portion> ::= <with portion> <with clause> <use portion> I

<use portion> ::= <use portion> <use clause> I

<with clause> with <unit simple name list>;

<unit simple name list> <unit simple name> I

<unit simple name list>, <unit simple name>

Note that this description is significantly longer than the Ada

Meta Language where {...1 means "zero or more times" and [...] means

zero or one time." Both BNF and the Ada Meta Language are sufficiently

powerful to express the syntax of any programming language, but since

they are Type 2 grammars, they cannot express the context-sensitive

static semantics of programming languages.

BNF and its derivatives are the most widely used vehicles for

programming language syntax specification. Because of this, several

compiler generation tools are based on BNF. For example, the UNIX (UNIX

is a trademark of AT&T) operating system contains a tool called yacc

(yacc is an acronym for Let another compiler compiler) which

takes a context-free grammar as input and produces a set of tables used

to generate a parser (1: YACC manual page).

Semantic Definition Languages. Two common tools for describing

static semantics are attribute grammars and the tree grammars such as

the Vienna Definition Language.

According to Reps, et al, "an attribute grammar is a context-

free grammar extended by attaching attributes to the symbols of the

grammar" (9:451). Attribute grammars have been used extensively for

11

* -- . - .S- 4 V- 7 1 V- -. - 1. - 71

language specification and automated language tools (3; 9; 10),

including generation of an Ada compiler (14).

Uhl et al (14) have produced an Ada compiler using an attribute

grammar called ALADIN (A Language for Attribute DefINition) and an

automated compiler front-end generator called GAG (Generator for

Attribute Grammars). The ALADIN code for the syntax portion of the

context clause example follows:

RULE r_214
CONTEXT ::= context CONTEXT ELMS

RULE r 215
CONTEXT ELEMS

RULE r 216
CONTEXT ELEMS ::= CONTEXT ELEM CONTEXT ELEMS

RULE r 217
CONTEXT ELEM ::= with NAMES '%'

RULE r 218

CONT ExT_ ELEM ::= USE

Vienna Definition Language (VDL) uses tree structures to represent

both the syntax and semantics of a programming language (15:1445). It

has been used to define several programming languages (4:45; 15:1447).

It consists of a syntactic meta language and a semantic meta language.

The syntactic meta language groups related syntactic elements in a tree

structure called the "abstract syntax." The concrete syntax, the actual

order of lexical elements in the language, must still be specified by

some other formal method (usually BNF). The semantic meta language is a

type of assembly language for a "VDL Machine." It can be analyzed by a

VDL interpreter program.

12

".',."".., .r,', ,. x~~r.£. .,~r- , . ._'r. :r..." .".'.' " ..,- '. .. . -- '..'..' . . .-.' - 'r " ."..
." , o" ? , ' ' """"- "t_ " " -" ", " , , , "" -""" "," t " •" " ,

--

The abstract syntax of the context clause might be expressed as

follows:

context_clause ((<Ia withclause> <s2 : usepart>),)

use_part - (useclause,)

withclause = (<s - op : with> : name_list>)

name_list = {(< : name> <s - op : ,> <s2 : namelist>), name,)

In addition to attribute grammars and the Vienna Definition

Language, compiler semantics have been designated by compiled output for

some particular machine architecture. If a compiler produces code which

maps into the specified compiled output, then the compiler is correct.

The machine architectures used for such language definitions are often

similar to the p-machine used by some Pascal compilers, but real

machines have been used, and McCarthy actually used LISP as its own

definitional language in one of the early papers. (11)

W-Grammars (4). Cleaveland and Uzgalis present an alternative

family of grammars called double-level grammars or simply "W-grammars"

after their developer Aad Van Wijngaarden who first used them in the

formal description of Algol 68. 'W-grammars are composed of two

context-free grammars: one grammar generates elements that are placed in

model production rules, thereby creating rules in the second grammar;

the second grammar is used to generate the language." (4:46).

W-grammars are more compact than context-free grammars and have

been proven to be Type 0 grammars, general phrase structure grammars.

Cleaveland and Uzgalis have shown the power of W-grammars by fully

defining the syntax and semantics (both static and dynamic) of a

13

V.2
0,

nontrivial programming language called ASPLE (A Simple Programming

Language Example).

The following is a W-grammar expression of the context clause

example:

contextclause withjpart repeated.

withpart withclause, useclause repeated.

withclause with symbol, unit_s implename list, SEMICOLON.

This example represents the syntax of the context clause but fails

to illustrate the full expressive power of the W-grammar which could

also ensure the context-sensitivity of each unitsimple name (each name

must have been previously compiled into the program library). A

complete description of W-grammars will be given in Chapter II.

Summary. Most of the work currently being done on semantic

description of programming languages is with attribute grammars. This

is probably due to the availability of tools such as yacc and GAG (16).

W-grammars, developed by Aad Van Wijngaarden hold promise as powerful

descriptive tools for combining the syntactic and semantic language

descriptions into a single expression.

Approach

After examining the available methods for expressing the semantics

of programming languages, W-grammars were chosen. W-grammars have the
U

same expressive ability as attribute grammars or the Vienna Definition

Language. However, because W-grammars can include both syntactic and

semantic information in the same expression, they make an intuitive link

between syntax and semantics which is less evident in the other methods.

14

[?, '," , ,-..,.,..?.:.: : - ; ? i i-L--,.. : . ..- ' ..- .i.?.. . '-i i ?-?.- ? . :,:?-I

The original approach to the design of a W-grammar for Ada was to

implement a series of W-grammars for successively larger Ada subsets.

It was discovered that subsetting Ada conflicts with the design goal of

creating a document which parallels the Ada Language Reference Manual,

so the "first cut" grammar is now a rather literal translation of the

Ada meta language into W-grammar format. The generation process was

invaluable for becoming familiar with W-grammars and in identifying

W-grammar "tools" which would aid in the second step.

The second step in the translation process was to choose a basic

Ada construct around which a W-grammar could be built-the distinguished

non-terminal symbol of a phrase structure grammar. This symbol was then

used as the root of a tree upon which the Ada W-grammar could stand.

The tree was expanded as many levels as was possible in the time

available for the study. The context-sensitive information gleaned from

the Ada Language Reference Manual was added to the W-grammar at this

time.

Document Overview

The organization of this document parallels the approach discussed

in the previous section. Chapter II gives an introduction to W-grammars

along with several examples to bring the reader "up to speed" with the

terminology used and the structure of W-grammars. Chapter III describes

the process used to generate W-grammar A, the direct translation from

Ada meta language format. Chapter IV presents W-grammar B which

attempts to include static semantic information in the W-grammar.

Chapter V presents Ada constructs not covered in W-grammar B, areas

worthy of future study, and a summary of the entire thesis.

15

if-

II. Description of W-prammars

Introduction

As stated in the previous chapter, Aad Van Wijngaarden developv

the meta language referred to as the W-grammar, as a descriptive tool to

aid in the formal definition of Algol 68. Cleaveland and Uzgalis

(4:45-89) give a detailed description of W-grammars as well as many

examples. Their nomenclature and syntax for W-grammars differ slightly

from the original, and this thesis will follow their description.

Terminology

The character set of W-grammars is separated into three distinct

groups: large syntactic marks, small syntactic marks, and separators.

Large syntactic marks, commonly called 'capital letters,' are combined

to form language tokens called metanotions. Small syntactic marks,

commonly called 'small letters,' combine to form protonotions. As

in the case of phrase structure grammars one protonotion is selected as

the distinguished symbol (unless otherwise noted, the distinguished

symbol is 's'). Metanotions and protonotions are combined to form

possibly empty strings called hypernotions. Separators, the double

colon ('::'), colon (':'), semicolon (';'), and period ('.') carry

special meaning in the formation of the W-grammar rules. The double and

single colon symbols are assignment symbols; the semicolon separates

rule alternatives; and the period is a rule terminator.

A W-grammar is composed of two sets of rules, metaproductions

and hyper-rules, which are combined to form a set of production

rules.

16

knU

'S

The metaproductions each define a metanotion. Following is a BNFIN.
description of a metaproduction.

<metaproduction> ::= <metanotion> <sequence of hypernotions>

<sequence of hypernotions> ::- <hypernotion>

(sequence of hypernotions>. -hypernotion>

The metaproductions form a grammar with metanotions as non-terminals and .
-. 5

protonotions for terminals.

The hyper-rules form templates for production rules. Here is the

BNF description for a hyper-rule.

<hyper-rule> <hypernotion> <sequence of hyperalternatives>

<sequence of hyperalternatives> ::f <hyperalternative> I

<sequence of hyperalternatives> ; <hyperalternative>

<hyperalternative> ::= <hypernotion> I

<hyperalternative> , <hypernotion> 5.

The hyper-rules are a set of rules where the non-terminals are

hypernotions and the terminals are protonotions.

The production rules are a possibly infinite set of rules generated

by combining the hyper-rules and metanotions whose terminals are

protonotions ending in 'symbol.'

<production rule> <protonotion> <sequence of prodalternatives>

<sequence of prodalternatives> ::= <prodalternative> I

<sequence of prodalternatives> ; <prodalternative>

<prodalternative> <protonotion> I <prodalternative> , <protonotion>

17

An Analogy

The nomenclature and syntax of W-grammars can be overwhelming the

first time they are encountered. A way to simplify the W-grammar

concept is to use your existing knowledge by drawing an analogy between

W-grammars and programming languages.

The metaproductions form the declarative part of a W-grammar. Each

individual metaproduction is like a variable declaration for a

metanotion which acts as a W-grammar variable. And the hypernotions

right of the double colon define the type of the variable.

The hyper-rules form the procedural portion of a W-grammar. Each

hyper-rule is like a function which takes metanotions as inputs and

returns production rules as outputs.

At a global level, W-grammars are like programs which continuously

produce members of the set of strings referred to as the language of the

W-grammar.

Uniform Replacement Rule

The hyper-rules and metanotions are combined in a manner called the

Uniform Replacement Rule.

As stated above, the hyper-rules form a pattern for the production
o

rules. Production rules are generated from hyper-rules by replacing any

metanotion by a terminal metaproduction of that metanotion. If any

metanotion occurs more than once in the hyper-rule, each occurrence of

the metanotion is replaced by the same terminal metaproduction.

An extension to the W-grammar which adds no power, but increases

brevity and readability is to treat metanotions which are the same

except for possibly a digit as their right-most character, as if they 5

18

U%

share the same defining metaproduction, but as distinct metanotions with

regards to the Uniform Replacement Rule.

In the programming language analogy, the Uniform Replacement Rule

can be viewed as a rule for binding variables to values.

A Finite Example

Following is an example of a W-grammar with a finite number of

production rules to illustrate the Uniform Replacement Rule.

Metaproductions

ALPHA :: a; b.

Hyper-rules

s t; u.

t letter ALPHA symbol, letter ALPHA symbol.

u letter ALPHA1 symbol, letter ALPHA2 symbol.

After applying the Uniform Replacement Rule to the hyper-rules we

end up with the following set of production rules.

s t; u.

t :letter a symbol, letter a symbol.

t letter b symbol, letter b symbol.

u :letter a symbol, letter a symbol.

u letter a symbol, letter b symbol.

u letter b symbol, letter a symbol.

u letter b symbol, letter b symbol.

Note the difference in the hyper-rules for t and u and how the Uniform

• . Replacement Rule affected the output.

19

"''"<"""''"".''"'" "' :. .'''. ". .x. .~ ,. - -.. . - . . . ,........,.,...... q......

A W-prammar for an Infinite Language

The following W-grammar describes the language of all strings

consisting of zeros and ones with an odd number of ones.

Metaproductions

ZEROEFY :: EMPTY; ZEROETY zero symbol.

EMPTY::.

Hyper-rules

s : ZEROETYl, one symbol, ZEROETY2;

ZEROETY1, one symbol, ZEROETY2, one symbol, s.

Replacing ZEROETYl and ZEROETY2 by EMPTY yields:

s : one symbol; one symbol, one symbol, s.

f. which covers the cases (11) 1 . Replacing ZEROETYI by zero

symbol and replacing ZEROETY2 by EMPTY yields:

s : zero symbol, one symbol; zero symbol, one symbol, one symbol, s.

which covers the cases (011) 01 . Combination of the two

production rules yields (011 + 11) (01 + 1) . The reader should

generate additional production rules until he is satisfied the W-grammar

covers all the possible cases.

Notice how the metanotion EMPTY is used to make the grammar

more concise. Note also that two metanotions and one hyper-rule can

represent an infinite number of production rules.

20

U-

W-graumar Sumary

"* "This chapter presented an introduction to a descriptive language

*' developed by Aad Van Wijngaarden called the W-grammar.

W-grammars consist of a series of metanotion definitions called

metaproductions and one or more production rule templates called

hyper-rules. The production rules, whose terminals end in symbol,

. are formed by replacing the metanotions in the hyper-rules according to

the Uniform Replacement Rule, so that a finite number of metaproductions

and hyper-rules can generate a possibly infinite number of production

rules.

Now that the preliminaries are complete, we can begin to create the

Ada W-gramnar.

21

III. W-prammar A

The Initial Translation

The first iteration of the Ada grammar, W-grammar A, is a literal

translation of the Ada meta language definitions from the Ada Language

Reference Manual. A literal translation was chosen as a way to become

more acquainted with W-gramars, and as a way to capitalize on the

existing formal syntax definition, as well as a way to insure the

complete language is addressed.

W-grammar A appears in Appendix A. The chapter and section numbers

in the appendix relate to the section number of the corresponding

context-free grammar rule in the Ada Language Reference Manual.

Metaproductions
CHAR :: a; b; c; d; e; f; g; h; i; j; k; 1; m; n; o; p; q; r; s; t; u;

v; w; x; y; z;

NOTION :: CHAR; NOTION CHAR.

EMPTY.

Hyper-rules

NOTION option : NOTION; EMPTY.

NOTION repeated : NOTION repeated, NOTION; NOTION; EMPTY.

NOTION list : NOTION; NOTION list, comma symbol, NOTION.

NOTION sequence : NOTION; NOTION sequence, semicolon symbol, NOTION.

NOTION pack : left parenthesis symbol, NOTION list, right parenthesis
symbol.

NOTION group : left parenthesis symbol, NOTION sequence, right
parenthesis symbol.

Figure 4. Some Hypernotions Used in W-grammar A.

22

%.

The W-graiar Tools

A series of metaproductions and hyper-rules influenced by

Cleaveland and Uzgalis (4:53-62) were developed to aid in the

translation process. These metanotions, shown in Figure 4, are designed

to replace the bracket and brace extensions to BNF used in the Ada

Language Reference Manual.

The underscore character was included for use in W-grammar A so the

identifier names used in the Language Reference manual could be used in

the W-grammar also. A specific underscore should be considered as a

large or small syntactic mark depending on the case of the word it is

in. Underscores not part of a word are considered to be small syntactic

marks.

The option and repeated constructs replace the square bracket

and brace symbols of the Ada meta language. A W-grammar option clause

causes the clause suffix to be considered optional since the protonotion

NOTION option may be replaced by either NOTION or EMPTY. The

repeated clause works similarly in that the clause suffix represented

by NOTION may occur zero (EMPTY), once, or several times. -1

Other W-grammar constructs developed include the list, a series

of NOTIONs separated by commas, and the sequence which is similarly

separated by semicolons. In addition, pack and group are

respectively a list and a sequence surrounded by parentheses.

An Example

The meta language to W-grammar translation which generated

W-grammar A was a simple mechanical process. It consisted of replacing

the BNF assignment symbol ":=' by ':', separating the language notions4..., •.,

23

Ad

by commas, and inserting the option and repeated protonotions in

place of brackets and braces in the Ada meta language. A representative

Ada construct, the task declaration, is converted from the Ada meta

language to W-grammar A form below.

The original Ada BNF representation (5:9-2) is:

taskdeclaration ::= task-specification;

taskspecification
task [type] identifier [is

(entrydeclaration)
(representation_clause)

end [task simple-name]]

taskbody ::=
task body tasksimple name is

[declarative_part]
begin

sequence of statements
[exception

exceptionhandler
{exception handler)]

end [tasksimple name];

Translating the first line simply requires changing the assignment

symbol and separating the right-hand notions by commas. The metanotion

SEMICOLON is used to represent the statement terminator. The

metaproduction for SEMICOLON is

SEMICOLON :: semicolon symbol.

With these changes the first expression becomes:

taskdeclaration : task specification, SEMICOLON.

The W-grammar expression for task specification reveals another

convention adopted for the Ada W-grammars: Ada reserved words are

24

% % %

treated as atomic symbols. In the W-graumar, a reserved word is

represented by that word followed by the production rule terminal

designator symbol.

An English description of the task-specification description given

above might say:

The taskspecification begins with the reserved word task
and the optional reserved word type followed by an
identifier. The remainder, which is also optional, consists
of the reserved word is followed by zero or more
entrydeclarations immediately followed by zero or more
representationclauses, and terminated by the reserved word
end followed by an optional task simplename.

In order to increase readability in the W-grammar, the large

optional portion beginning with is is moved to a separate definition -

called ispart. The W-grammar definition of taskspecification is:

to taskspecification : TASK, TYPE option, identifier, isjpart option.

isjpart : IS, entrydeclaration option, representation clause

option, END, task simple name option, SEMICOLON.

TASK, TYPE, IS and END are metanotions representing the terminal

protonotions task symbol, type symbol, is symbol, and end

symbol.

Finally, the W-grammar translation for taskbody is:

taskbody : TASK, BODY, tasksimple name, IS, declarativepart
option, BEGIN, sequence of statements, exceptionpart
option, END, tasksimple_name option, SEMICOLON.

exceptionJpart : exceptionhandler, exception-handler option.

exception_part, like is_part, was created to increase readability.

25

.....

Italicized Names

Although W-grammar fully describes Ada's syntax, it fails to

reflect any semantic information. An indication of this is the number

of names used which have italicized parts in the Ada Language Reference

Manual, where "the italicized part is intended to reflect some semantic

information" (5:1-8).

The italicized names found in the Ada Language Reference Manual are

listed in Table I. These items are used in the Ada Language Reference

Manual and W-grammar A to represent specific declared items whose use in

the program depend on the actual context. These constructs must be

further defined in the W-grammar to reflect their context-sensitivity.

Table I. Italicized Terms in the Ada Language Reference Manual.

Section Term

2.8 argument identifier
3.2 universal static-expression
3.3.2 typename

subtypename
3.5 rangeattribute
3.5.7 staticsimple expression
3.6 component subtypeindication

discretesubtypeindication
3.7.2 discriminant simplename
3.7.3 component simple name
5.2 variablename
5.3 boolean -expression

5.5 loopsimplename
5.6 block simplename
5.7 label name
6.4 procedure name

function name
parametersimple name

7.1 packagesimple name
8.4 packagename
8.5 object name

. 7- .exception name

26

Table I. Italicized Terms in the Ada Language Reference Manual (cont.).

Section Term

subprogram or entryname
9.1 task simple name
9.5 entryname

entry_simplename
10.1.1 unit simple name
10.2 parentunit name
12.3 genericpackage name

genericprocedurename
genericfunction_name

subprogram name
13.3 type_simple name

componentname
static range

13.8 record aggregate

The items in this list represent identifiers or expressions. The

static semantics of each of these is similar in that each depends on a

previous declaration or on the inherent type of a constant.

A typical example from this group is procedurename. The static

semantics require a procedure to be defined before it can be called. A

definition of procedurename reflecting this requirement can be

produced in a W-grammar:

procedurename :: IDENTIFIER, where IDENTIFIER is defined

with type PROCEDURE.

The static semantics problem is in defining the context-sensitive phrase

where NOTION1 is defined with type NOTION2 in such a way that the

phrase can be parsed by the W-grammar. The static semantics problem is

addressed in the second W-grammar found in Appendix B and discussed in

Chapter IV.

27

% o" " % . " " . . -. ° - . "- -.-. " . - .". ,- •: . , -' . " . " . " . .• . . o • " , - . . " . -

IV. W-gramiar B

Introduction

W-grammar B found in Appendix B contains a partial Ada grammar

displaying a method for expressing Ada's context-sensitivity in

W-grammar form. This W-grammar is a complete syntactic and static

semantic description of an Ada compilation down to the

package/subprogram level. It successfully demonstrates the ability of

W-grammars to not only express Ada's syntax but its static semantics as

well. This chapter describes the development and structure of

W-grammar B.

W-grammar B in Relation to W-grammar A

The original motivation for creating W-grammar A was to build a

framework to which static semantic restrictions could be added to create

a context-sensitive W-grammar. Early in the development of W-grammar B

it became apparent that the nature of a W-grammar which included

semantic information was very different from the purely syntactic

W-grammar A. Therefore, a better grammar would result from a whole new

development rather than from trying to coerce the W-grammar A design

into a context-sensitive form.

W-grammar B utilizes the knowledge gained while designing W-grammar

A about W-grammar design, as well as how to make Ada constructs fit into

W-grammar descriptions. In addition, most of the W-grammar tools shown

in Figure 2 were used in designing W-grammar B.

.5

28

S.. -.-. " " ., . . -- ,. - %* . -. ,- . - 5 . -.

The Ada Program Concept

W-grammars, BNF, and phrase structure grammars require a concept

called the "distinguished symbol" or "the root of the language"

(4:9-10). For most languages, the language root is a symbol .
P

representing a compiled program. Separate compilation is handled by

ignoring the static semantics of separately-compiled subroutines until

link time. Ada is different from most languages in that it requires the

semantics of separately compiled program units to be checked through the

use of the library. Therefore there is really no Ada equivalent of a

stand-alone program: every Ada program is compiled in the context of the

existing Ada program library.

The clause LIBRARY compilation from hyper-rule B.34 is a rough

equivalent for an Ada language root: the "distinguished non-terminal

symbol" of BNF or a phrase structure grammar. This clause is a

hypernotion (containing a metanotion, a W-grammar 'variable') rather

than a protonotion (a W-grammar 'constant'). The true root c7 the

language must be a protonotion since it must be a non-terminal of a

production rule. The true Ada root would be something like

environment which would include all the predefined packages as well as

all library units which have ever been compiled into that particular Ada

program library.

LIBRARY compilation clearly infers the semantic fact that all

compilations must take place in the context of the program library.

LIBRARY

To handle the context-sensitivity of an Ada compilation the

LIBRARY clause was developed. LIBRARY is defined in Metaproduction

29

. .-.- . . -..- .+ ,-. ,. . .- ., -. .. ,- .. . ,.. ,, -'., ,. .-.. . '-" - -., .. , ..

B.K as a series of library entry clauses separated by nextentry and

terminated by endlibrary. LIBRARY serves as a type of symbol table

of previously compiled library units as well as the Ada predefined

environment. It carries all the syntactic and semantic information

necessary to describe the current compilation environment. The clause

A
library entry is defined by Hyper-rule B.14 as a NAME followed by a

DESCRIPTION; there is one library entry for each previously defined

library unit.

A NAME, Metaproduction B.J, is a series of characters each

separated by the token name. The NAME portion of a library entry

represents the identifier associated with the library entry. Using

the name tokens simplifies the process of locating the particular

library entry within LIBRARY.

WJ DESCRIPTION is the part of a library entry which lists the

attributes of the object represented by the library entry.

DESCRIPTION is defined by Metaproduction B.R.

To illustrate how the LIBRARY concept works in W-grammar B

consider the following hyper-rule for construction of a foo construct.

LIBRARY foo construct : foo symbol, IDENTIFIER print, SEMICOLON,
where ID is in LIBRARY

and ID describes IDENTIFIER.

This hyper-rule describes something which could be described in BKT by

<foo construct> foo <identifier>

with the additional constraint that the IDENTIFIER be declared in

30

.:U

LIBRARY. This is clearly a context-sensitive constraint. Now we will

analyze how this rule is used to parse a language string.

Comparing the BNF and W-grammar rules, one can easily see that the

first three hypernotions on the right side of the colon describe the

syntax of the foo construct. Therefore the where portion of the

description must describe the static semantics.

How does it work? Remember from Chapter II that the terminal

protonotions of the production rules must end in symbol. The where

clause is formed so that it parses into an empty string or a protonotion

not ending in symbol. If the where clause goes away (parses into an

empty string) then the static semantics are correct, but if it reduces

to any other protonotion, it won't be a terminal and therefore the

grammar won't be able to parse the candidate string.

Consider the statement

foo junk;

This statement should parse if and only if junk is in the library.

Consider the case where the statement is correct:

1. If the statement is correct, then junk must be in the library.

2. If junk is in the library, then LIBRARY, which reflects

the contents of the library, must be of the form

"nextentry... nextentrynamejnameunamennamekkindof.. .endlibrary"

where the ellipses contain other characters with which we

are not concerned.

3. If junk is in the library, then the library entry for

junk is of the form

. . . o

31-.

"namejnameunamennamekkindof..." which is also a substring

of LIBRARY.

Now substitute the appropriate strings into the hyper-rule (don't forget

the Uniform Replacement Rule which applies to the multiple instances of

LIBRARY, IDENTIFIER, and ID). The original rule is:

LIBRARY foo construct : foo symbol, IDENTIFIER, SEMICOLON,
where ID is in LIBRARY

and ID describes IDENTIFIER.

Where ID is defined by metaproduction B.L:

ID :: library entry.

Substituting for LIBRARY and ID gives us

nextentry. .. nextentrynamejnameunamennamekkindof...endlibrary
foo construct : foo symbol, IDENTIFIER, semicolon symbol,

where namejnameunamennamekkindof... is in
nextentry... nextentrynamejnameunamennamekkindof.. .endlibrary
and namejnameunamennamekkindof... describes IDENTIFIER.

Applying metanotion B.I,

IDENTIFIER :: LETTER; IDENTIFIER, UNDERSCORE option, LETT'ER option,
DIGIT option.

we can obtain

IDENTIFIER :: junk.

Note that the Uniform Replacement Rule does not apply to

metaproductions.

32

. - . . . - ** -

Substituting again, we get

nextentry.. .nextentrynamejnameunamennamekkindof.. .endlibrary
foo construct : foo symbol, junk print, semicolon symbol, "

where namejnameunamennamekkindof... is in
nextentry... nextentrynamejnameunamennamekkindof... endlibrary
and namejnameunamennamekkindof... describes junk.

Then hyper-rule B.14 can be used to foim the production rule

junk print letter j symbol, letter u symbol, letter n symbol,
letter k symbol.

Substituting once again gives us

nextentry.. .nextentrynamejnameunamennamekkindof.. .endlibrary
foo construct : foo symbol, letter j symbol, letter u symbol,

letter n symbol, letter k symbol, semicolon symbol,
where namejnameunamennamekkindof... is in

nextentry... nextentrynamejnameunamennamekkindof...endlibrary
and namejnameunamennamekkindof... describes junk.

which gives us the complete syntactic structure.

Now for the semantics...

The last protonotion is of the form of hyper-rule B.23:

where NOTETY1 and NOTETY2 : where NOFETY1; where NOTETY2.

Substituting 'namejnameunamennamekkindof... is in

nextentry...nextentrynamejnameunamennamekkindof.. .endlibrary' for

NOTETYI and 'namejnameunamennamekkindof... describes junk' for NOTETY2

we get:

33p

33 -

............'/ ... '....''.,.'''', . ..',.'''...'a . . *.', " . a .

where namejnameunamennamekkindof... is in
nextentry... nextentrynamejnameunamennamekkindof.. .endlibrary and

namejnameunamennamekkindof... describes junk
where namejnameunamennamekkindof... is in

nextentry... nextentrynamejnameunamennamekkindof... endlibrary,
where namejnameunamennamekkindof... describes junk.

Substituting once again into the original equation:

nextentry... nextentrynamejnameunamennamekkindof...endlibrary
foo construct : foo symbol, letter j symbol, letter u symbol,

letter n symbol, letter k symbol, semicolon symbol,
where namejnameunamennamekkindof... is in

nextentry.. .nextentrynamejnameunamennamekkindof... endlibrary,
where namejnameunamennamekkindof... describes junk.

Now the where...and clause has become two simpler where clauses.

Working right to left we find that the last where clause matches

B.29 and that the other where clause matches B.19. The B.19

resolution is trivial, but the B.29 resolution requires several

applications of hyper-rule B.29, and for the sake of saving space, the

completion of this exercise is left to the reader.

The final production rule is

nextentry.. .nextentrynamejnameunamennamekkindof.. .endlibrary
foo construct : foo symbol, letter j symbol, letter u symbol,

letter n symbol, letter k symbol, semicolon symbol.

which maps into the syntax

foo junk;

and brings us back where we began. If junk had not have been in the

LIBRARY structure, the where clauses would not have resolved to

EMPTY and the statement 'foo junk;' would have been impossible to

• '-- parse and hence not part of the language.

34

........

The Development of W-grammar B "!!
After the language root LIBRARY compilation was defined,

W-grammar B was developed in a tree-like manner; Figure 5 represents

the development strategy followed. Hyper-rule B.34 is equivalent to the

similar Ada meta language statement in Section 10.1 of the Ada Language

Reference Manual (5:10-1).

LIBRARY compilation (B.35)

LIBRARY compilation unit (B.36)
/\

/\
LIBRARY librar1 unit ID (B.37) LIBRARY secondary unit ID (B.38)

LIBRARY subpro ram declaration ID library unit body ID
I. (B.47) (B.39)

subprogram specification ID (B.48) LIBRARY subprogram specification
(B.49)

LIBRARY context clause (B.40) LIBRARY validate FORMAL PART
/ \(B.50)

LIBRARY IDS use part (B.41) LIBRARY IDS with clause (B.42)

LIBRARY iuse clause (B.45) LIBRARY IDS with part (B.43)

LIBRARY IDS package (B.46) LIBRARY with part (B.44)

Figure 3. W-grammar B Development.

New Tools in W-grammar B. Before describing the basic constructs

which appear in Figure 5, we will examine the peripheral hyper-rules

necessary to add static semantics to the Ada W-grammar.

35

oU

Wy'*~ ~b~y Y~~Y2~T -. - WLVVW7%.v. LML W1 LVvv',txc- W -x-.'

Rules B.17 through B.34 (beginning with the symbol where) form a

set of boolean expressions which give the W-grammar the expressive power

to selectively parse only expressions which are correct by the

context-sensitive rules of W-grammar B. These rules work because

W-grammar production rules terminate with clauses ending with the symbol

symbol. If the where... clause is true it will parse to EFPTY and

cease to exist; if it is false it will not parse to EMITY or a clause

ending in symbol resulting in a 'dead end' parse tree-an invalid

language construct.

Rules B.18 through B.22 handle equality of strings. Note that

proving things not equal is harder than proving them equal. It is easy

to search one string for the presence of another string in a W-grammar

using a structure like NOTETYI STRING NOTETY2. But in order to search

for the absence of a string you must search the larger string by

"peeling it off" one character at a time.

Rules B.23 through B.26 check for membership in a string. These

clauses are the most useful for adding context-sensitivity since the

static semantic information is kept in long strings called LIBRARY and

IDS.

Rules B.27 and B.28 are the boolean operators and and or. They

do not behave exactly like their mathematical counterparts and care must

be taken when using them--especially when mixing and and or. This is

because they are string manipulators and have no precedence order.

Rules B.29 through B.34 are used to check semantic information kept

in an ID. B.29 and B.30 are used to check whether a particular ID

36

*, . . -. . • • • • °- ." .. .- ,- • ". ". ' -. " • . ". " " " ° * . " " " . " '." . " ' . -.'- .'-.'. -.. - . *

describes a particular IDENTIFIER, and B.31 through B.34 check the

attributes of the ID.

The Ada Subset. The rest of the rules, B.34 through B.54,

describe the Ada subset implemented in W-grammar B. Due to time

constraints, only a subset of Ada was considered. The actual Ada subset

is small and nonfunctional having only 16 semantic constructs, but it is

sufficiently large to demonstrate the context-sensitivity of the

W-grammar. The Ada syntactic units included are listed in Table II.

Table II. Ada Constructs Included in W-grammar B.

Ada Language Reference Manual Section Ada Constructs

2.1 graphiccharacter
basicgraphic _character
basic-character

I 2.3 identifier

3.9 proper-body

6.1 subprogram declaration
subprogram-specification
formal-part
parameterspecification
mode

8.4 use clause

10.1 compilation
compilation unit
library_unit
secondary_unit
library_unitbody

10.1.1 context clause
with clause

10.2 subunit

37..

37

PV

As stated above, rule B.35 describes the clause LIBRARY

compilation which is used as the root of the language. It is defined

as a series of compilation units.

Rule B.36 expands a compilation unit as a context clause followed

by either a library unit or a secondary unit. A library unit, rule

B.37, is a separate program unit which upon compilation becomes a part

of the program library. Subprogram bodies can be either library units

or subunits depending on whether the subprogram has been declared to the

library. The correct type of subprogram body is identified with B.37 by

the clause where ID is not in LIBRARY.

B.38 is the definition of a subunit. Subunits must already have

been defined in the library at compilation time; these semantics are

enforced by the clause where ID is in LIBRARY.

Rule B.39 describes a library unit body as either a subprogram body

or a package body. '-

A context clause is described in rule B.40 as a with clause

followed by a repeated use part, and rule B.41 describes the use part

as the symbol use followed by repeated use clauses. The with

clause, rule B.42, is with followed by a with part ending with a

semicolon.

Rules B.43 and B.44 describe the with part. The rules require

that all the IDs in IDS and only those IDs are referenced. These

two rules form a recursive definition with B.44 forming the escape

clause.

38

B.45 defines the use clause, and B.46 enforces the rule that the

packages used in the use clause were referenced in the previous with

clause.

Rules B.47 and B.48 define the subprogram declaration referred to

by B.37, rules B.49 and B.50 define subunits as referred to in B.38.

Summary

This chapter presented the development of a partial W-grammar for

Ada which can handle syntactic and static semantic requirements of

compilation units through the declaration of the top level program

units. Static semantics were handled through the use of a

symbol-table-like LIBRARY construct which represents the programming

library environment, and selective parsing of valid expressions was done

through where... clauses which parse only when presented with a true

expression.

39

" ." .""", '. ', '.'... " ""'. ", ".""-' .',/'..'2 .' .'",'".'" " ,' ." -' ,".- , " "," , "."".""-' -" ,r ." 41 ,
"

.," , ." ." "- ""/- '.. - .1.

V. Conclusion No

This chapter covers the possibility of representing several other

Ada syntactical constructs in W-grammar form, topics which appear worthy

of future study, and finally, a summary of the entire thesis document.

Ada Constructs Not Covered in W-grammar B

Ada constructs considered are those originally thought hard to

represent in W-grammar form due to the advanced nature of their

semantics. The increased familiarity with W-grammars and with the

description of Ada static semantics in W-grammars gained while designing

the two W-grammars described in this document has helped the author see

simple (though not trivial) implementation solutions for the static

semantics for each construct.

These solutions were not addressed in W-grammar B due to time

constraints. The specific Ada constructs addressed are generic units,

tasks, and overloading.

Generics. Generic units should not be difficult to incorporate

in a W-grammar. The generic definition could be added to the library

like any other definition and the instantiation would simply add the

instantiated name along with any parameters to the library as well.

As an example, a possible W-grammar hyper-rule for generic

instantiation might be.

LIBRARY generic instantiation
NOTION1, IDENTIFIER1, IS, NEW, II)ENTIFIER2, ID actual part,
where ID is in LIBRARY,
where ID describes IDENTIFIERI,
where ID kind generic NOTION1.

40

.-. < .-.. . .-.

This rule requires the definition of NOTION actual part which is

analogous to genericactual_part in the Language Reference Manual, but

all the other clauses in this definition have previously been defined

in W-grammar B.

Tasks. Tasks are simple to incorporate in W-grammar B since they

have static semantics very similar to the other types of program units.

Tasks may cause considerable problems for anyone attempting to

express the dynamic semantics though, since Ada task-related

statements (notably the select statement) can be nondeterministic.

Nondeterminism is expressed in W-grammar statements by multiple

hypernotions separated by semicolons on the right hand side of a

W-grammar rule (nondeterminism in a grammar requires a parser to make a

choice between two or more options).

4- Overloading. Overloading can be easily handled by structuring

library searches so they search in reverse order of library growth. By

searching in reverse order and requiring that parameter types match, the

correct object will be found when searching for an overloaded name.

Overloading is similar to defining local variables with the

same names as global variables.

For an example consider the case where the "+" operator is

overloaded for two integers. The earliest library entry for "+" with

two integer parameters will be the predefined entry from package

STANDARD, and any user definition of "+" for two integers will occur

later in the symbol table (toward the right end of the string

LIBRARY). If the LIBRARY search routine searches from right to

41

d J L ~ ..-... 1 ~ ~ &j. . ~.kA A I-

left, it viii encounter the user's definition first, use it, and cease

searching with the correct entry for "+".

Areas for Further Study

This thesis has uncovered several promising areas for future

investigation related to Ada syntax and semantics as well as the syntax

and semantics of programming languages in general.

The first area of interest of course, is the completion of

W-grammar B. Such a continuation of this work would test the assertions

made earlier in this chapter, as well as possibly lead to the benefits

addressed in chapter I. In addition, a complete Ada W-grammar including

static semantics would be useful as an academic case study for the

topics below.

More study of W-grammars is necessary. While preparing the

W-grammars in this study the author noted that the readability, and

therefore the useability, of a W-grammar depends heavily on stylistic

decisions made by the W-grammar designer. Research into which W-grammar

styles are most understandable, and guidelines for designing

understandable W-grammars is necessary before W-grammars can be used as

a medium expressing military standards.

W-grammars also seem to express certain constructs better than

others as in the case of the W-grammar B hypernotions "where NOTION is

in NOETYT" and "where NOTION is not in NOT"PTY." Defining the first

expression requires a single one-line hypernotion, while defining the

second requires 6 hypernotions for a total of 13 lines of W-grammar

code. Research in this area could reveal the type of programming

languages best suited to W-grammar definition.

42

% % - 4

More study is needed in the area of formal expression for

semantics-especially in the area of an expression medium. W-grammars

may prove too cumbersome for use in situations where the individual

grammatical symbols must be manipulated. This thesis proves the

possibility of describing Ada's static semantics formally, but some

other method such as axiomatic definition might produce a more useful

form for such uses as formal correctness proofs.

Thesis Summary

Ada is a modern programming language reflecting the most recent

knowledge about software engineering. But the same attributes which

make Ada a good choice for a programming language, namely its modern

language constructs which promote program reliability and

maintainability, also make Ada a large and complex language.

The formal definition of Ada is in terms of a modified BNF grammar

describing its syntax augmented by a prose description of its semantics.

This thesis explores a method for improving the formal definition of

Ada by formally defining the syntax and static semantics of Ada in terms

of a W-grammar.

A W-grammar is composed of two context-free grammars which are

joined to form BNF-type production rules by a method known as the

Uniform Replacement Rule

Two Ada W-grammars are given in the Appendices. W-grammar A is a

translation from the Ada meta language; it demonstrates the ability of a

W-grammar to express Ada's full syntax.

W-grammar B presents not only the syntax, but the static semantics

..- as well. This W-grammar does not present the complete Ada language, but

43

' ' " '. • " ' . .,....... ".....'"-.", -, . "-." .r .2 .'- ."2" "' -2'2 " - ". "- - '

4P.J

due to time constraints, it simply presents a portion of the language

sufficiently large to demonstrate the ability of a W-grammar to describe

Ada's static semantics.

This thesis demonstrates the ability of W-grammars to describe the

syntax and static semantics of Ada. It is expected that formal

definition of Ada's semantics, both static and dynamic, will add to the

language's portability and reliability. The results presented here help

support these goals.

416

.4

'.'':.',: ':,,;. , .:.'4 '4. 4: ,. , -; '2 '2; ;, " ."-." ."-;-.;-;..j-...i...2....% .. .: *.. - .

Appendix A: W-grammar A

2.1 Character Set

graphic-character basicgraphic character; lowercase symbol;
other specialcharacter symbol.

basicgraphiccharacter : upper-case symbol; digit symbol;
specialcharacter symbol; spacecharacter.

basiccharacter : basic__graphic character; formateffector.

upper case : capital letter.

digit : zero; one; two; three; four; five; six; seven; eight; nine.

specialcharacter : quotation; sharp; ampersand; apostrophe;
left parenthesis; right parenthesis; star; plus; comma; hyphen;
dot; slash; colon; semicolon; less than; equal; greater than;
underline; vertical bar.

lower-case : letter letter.

other-special character : exclamation mark; dollar; percent; question
mark; commercial at; left square bracket; back-slash; right square
bracket; circumflex; grave accent; left brace; right brace; tilde.

letter : a; b; c; d; e; f; g; h; i; j; k; 1; m; n; o; p; q; r; s; t; u;
v; w; x; y; z.

COMMA :: comma symbol.
COLON :: colon symbol.
SEMICOLON :: semicolon symbol.
LPAREN :: left parenthesis symbol.
RPAREN :: right parenthesis symbol.
PLUS :: plus symbol.
HYPHEN :: hyphen symbol.
STAR :: star symbol.
SLASH :: slash symbol.
CT :: greater then symbol.
LT :: less than symbol.
EQUAL :: equal symbol.
UNDERLINE :: underline symbol.
APOSTROPHE :: apostrophe symbol.

.45

-. -.- . A~' . d- " % . " -.- -_-. • - " % % % * " . -. ".- 'A. • . -.. .- . .' - -- -. . . - .'.". ... -- .* :.-.: . .--. - . -

S .

2.2 Lexical Elements, Separators, and Delimiters

delimiter : simpledelimiter symbol; compounddelimiter symbol.

simple delimiter : ampersand; apostrophe; left parenthesis; right
parenthesis; star; plus; comma; hyphen; dot; slash; colon;
semicolon; less than; equal; greater than; vertical bar.

compound delimiter : arrow; double dot; double star; assignment;
inequality; greater than or equal; less than or equal; left label
bracket; right label bracket; box.

TABLE I. Compound Delimiters in W-grammar A.

grammatical symbol delimiter

arrow symbol =>
double dot symbol
double star symbol **
assignment symbol =
inequality symbol
greater than or equal symbol >=
less than or equal symbol <=
left label bracket symbol <<
right label bracket symbol >>
box symbol 0

ARROW :: arrow symbol.
DDOT double dot symbol.
DSTAR double star symbol.
ASSIGN assignment symbol.
INEQUALITY :: inequality symbol.
GE greater than or equal symbol.
LE :: less than or equal symbol.
LLABEL left label bracket symbol.
RLABEL ": right label bracket symbol.
BOX :: box symbol.

2.3 Identifiers

idchars underline option, letter or digit symbol.

a-letter: lower-case; upper-case.

46

identifier : a letter symbol, idchars option.

letter_or_digit : a_letter; digit.

2.4 Numeric Literals

numeric_literal : decimalliteral; basedliteral.

2.4.1 Decimal Literals

fraction dot symbol, integer.

intchars UNDERLINE option, digit symbol.

decimalliteral integer, fraction option, exponent option.

integer digit symbol, intchars option.

exponent capital e symbol, sign, integer.

sign : PLUS; HYPHEN; EMPTY.

2.4.2 Based Literals

basedliteral : base, sharp symbol, basedinteger, bfraction option,
sharp symbol, exponent option.

bfraction : dot symbol, based integer.

base integer.

based-integer extended-digit symbol, bchars option.

extended-digit : a_letter; digit.

bchars underline OPTION, extended digit symbol.

2.5 Character Literals

characterliteral APOSTROPHE, graphic-character, APOSTROPHE.

2.6 String Literals

string literal quotation symbol, graphic character option, quotation
symbol.

47

2.8 Pragmas

pragma :: pragma symbol, identifier, pragmaargument option.

pragmaargument :: LPAREN, argumentassociation list, RPAREN.

argument association :: argid option, name; argid option, expression.

argid :: argument-identifier, ARROW.

2.9 Reserved Words

In the W-Grammar reserved words will be identified by the word followed
by "symbol".

AND :: and symbol.
AT at symbol.
BEGIN :: begin symbol.
BODY :: body symbol.
CONSTANT :: constant symbol.
ELSE :: else symbol.
END :: end symbol.
FOR :: for symbol.
IF if symbol.
IN in symbol.
IS :: is symbol.
LIMITED :: limited symbol.
NEW new symbol.
NOT not symbol.
NULL null symbol.
OF :: of symbol.
OR:: or symbol.
OUT:: out symbol.
PACKAGE :: package symbol.
RECORD :: record symbol.
RENAMES :: renames symbol.
SELECT :: select symbol.
TASK :: task symbol.
THEN :: then symbol.
TYPE :: type symbol.
USE :: use symbol.
XOR :: xor symbol.

48

3.1 Declarations

basic-declaration object-declaration; number-declaration;
typedeclaration; subtypedeclaration; subprogramdeclaration;
package_declaration; taskdeclaration; generic declaration;
exception declaration; generic instantiation; renamlngjdeclaration;
deferred constant declaration.

3.2 Objects and Named Numbers

objectdeclaration : identifier list, COLON, constant option,
subtype indication, assignment option, SEMICOLON; identifier list,
COLON, constant option, constrained-arraydefinition, assignment
option, semicolon.

assignment : ASSIGN, expression.

number-declaration : identifier list, COLON, constant, ASSIGN,
universalstatic expression.

3.3.1 Type Declarations

typedeclaration : full type_declaration; incomplete-type declaration;
privatetype_declaration.

full typedeclaration : TYPE, identifier, discriminant_part option, IS,

typedefinition, SEMICOLON.

typedefinition : enumeration typedefinition; integer typedefinition;
realtypedefinition; arraytype_definition;
record typedefinition; access-typejdefinition;
derived_type_definition.

3.3.2 Subtype Declarations

subtype declaration : subtype symbol, identifier, IS,
subtype indication.

subtype indication : typemark, constraint option.

type_mark : typename; subtype name.

constraint : range constraint; floatingpointconstraint;
fixed_point_constraint; indexconstraint; discriminantconstraint.

3.4 Derived Types

derived typedefinition NEW, subtype indication.

49

3.5 Scalar Types

range-constraint : range symbol, rangeexpression.

range, expression : range attribute; simple-expression, ddot,
simple expression.

3.5.1 Enumeration Types

enumerationtype_definition : LPAREN, enumerationliteralspecification
list, RPAREN.

enumerationliteral specification : enumeration-literal.

enumeration literal identifier; character literal.

3.5.4 Integer Types

integertypedefinition range constraint.

3.5.6 Real Types

real typedefinition floatingpoint constraint;
fixedpoint constraint.

3.5.7 Floating Point Types

floatingpointconstraint : floatingaccuracydefinition,
range_constraint option.

floatingaccuracydefinition : digits symbol, static simple expression.

3.5.9 Fixed Point Types

fixed_pointconstraint : fixedaccuracydefinition, rangeconstraint
option.

fixed_accuracydefinition : delta symbol, staticsimple expression.

3.6 Array Types

arraytypedefinition : unconstrainedarraydefinition;
constrainedarraydefinition.

unconstrainedarray definition : array symbol, index subtype definition
list, OF, component subtypedefinition.

50

.

index subtypedefinition : type mark, range symbol, BOX.

indexconstraint : LPAREN, discrete-range list, RPAREN.

discreterange : discretesubtype indication; range.

3.7 Record Types

record type_definition : RECORD, componentlist, END, RECORD.

component list : component-declaration, componentdeclaration repeated;
componentdeclaration repeated, variant_part; null, SEMICOLON.

componentdeclaration : identifier list, COLON,
componentsubtypedefinition, assignment option, SEMICOLON.

component subtypedefinition : subtype indication.

3.7.1 Discriminants

discrminant_part : LPAREN, discriminant specification sequence, RPAREN.

discrimination specification : identifier list, COLON, type mark,
assignment option.

3.7.2 Discriminant Constraints

discriminant constraint LPAREN, discriminant association list,

RPAREN.

discriminantassociation discriminantname_part option, expression.

discriminantname__part : discriminant.simplename, ARROW;
discriminantsimple name, vertical bar symbol,
discriminant7namepart.

3.7.3 Variant Parts

variant-Part : case symbol, discriminantsimple name, IS, variant,
variant repeated, END, case symbol.

variant : when symbol, choice, option repeated, ARROW, component-list.

option vertical bar symbol, choice.

choice simple expression; discrete range; others symbol;
component simplename.

51

".-',-"...- ,, ' 5*" ,-,'. 54. * " "."."--".-* ".."5 -'.. . ". "..' • .. --A, - - '.. ', ' . .-.. ,'* .. , ,'.'. ',,, ~ ... ,' ,,, "

R1-.- 0.1 2 -. - T-4 -A1 r d " W-1.

C.

3.8 Access Types

access typedefinition : access symbol, subtype indication.

3.8.1 Incomplete Type Declarations

incomplete typedeclaration TYPE, identifier, discriminant_part
option, SEMICOLON.

3.9 Declarative Parts

declarative_part : basic declarative item repeated,
laterdeclarative-item repeated.

basic-declarativeitem : basic-declaration; representationclause;
use clause.

laterdeclarativeitem : body; subprogram declaration;
package_declaration; taskdeclaration; generic-declaration;
useclause; generic instantiation.

body : properbody; body stub.

proper body subprogram body; packagebody; taskbody.

4.1 Names

name simplename; character literal; operator symbol;

indexed component; slice; selected-component; attribute.

simple-name : identifier.

prefix name; function-call.

4.1.1 Indexed Components

indexedcomponent : prefix, LPAREN, expression sequence, RPAREN.

4.1.2 Slices

slice prefix, LPAREN, discreterange, RPAREN.

4.1.3 Selected Components

selected-component :prefix-selector.
.- 5

52

selector : simple name; character literal; operator symbol; all symbol.

4.1.4 Attributes

attribute : prefix, APOSTROPHE, attribute-designator.

attributedesignator : simplename, optional attrsuffix.

attrsuffix : LPAREN, universal-static-expression, RPAREN.

4.2 Literals

4.3 Aggregates

aggregate : LPAREN, componentassociation list, RPAREN.

component association : choice_part option, expression.

choiceypart : choice, option repeated, ARROW.

4.4 Expressions

expression : relation, expressionsuffix option.

expression-suffix : short circuit controlform, relation;
logical-operator, relation.

logical operator : AND; OR; XOR.

shortcircuitcontrolform : AND, THEN; OR, ELSE.

relation : simDle expression; simple expression, relationaloperator,
simple-expression; simple-expression, NOT option, IN,
rangeexpression; simple-expression, NOT option, IN, typemark.

simple expression unaryaddingoperator option, term, se-suffix
option.

se suffix : binary addingoperator, term.

term : factor, term-suffix option.

t-rmsuffix : multiplyingoperator, factor.

factor : primary, exponential option; abs symbol, primary; NOT;
primary.

exponential DSTAR, primary.

53 .

I U

primary : numeric literal; NULL; aggregate; stringjiteral; name;
allocator; functioncall; type conversion; qualifiedexpression;
LPAREN, expression, RPAREN.

4.5 Operators and Expression Evaluation

logical-operator : AND; OR; XOR.

relationaloperator : EQUAL; INEQUALITY; LT; LE; GT; GE.

binaryadding-operator : PLUS; HYPHEN; ampersand symbol.

unaryadding operator PLUS; HYPHEN.

multiplying operator STAR; SLASH; mod symbol; rem symbol.

highestprecedenceoperator DSTAR; abs symbol; NOT.

4.6 Type Conversions

typeconversion : type mark, LPAREN, expression, RPAREN.

4.7 Qualified Expressions

- qualified expression : typemark, APOSTROPHE, LPAREN, expression,
RPARE ; type-mark, APOSTROPHE, aggregate.

4.8 Allocators

allocator NEW, subtype indication; NEW, qualifiedexpression.

5.1 Simple and Compound Statements - Sequences of Statements

sequence.ofstatements : statement, statement repeated. -

statement : label repeated, simple-statement; label repeated,
compoundstatement.

simple-statement : nullstatement; assignment-statement;
procedure callstatement; exit statement; return statement;
goto statement; entry_callstatement; delay statement;
abortstatement; raisestatement; code statement.

compund statement : if statement; casestatement; loop statement;
blockstatement; accept-statement; selectstatement.

AN label : LLABEL, label simplename, RLABEL.

54

Ile,

. "d.

null_ statement : NULL, SEMICOLON.

5.2 Assignment Statement

assignment-statement : variable-name, assignment.

5.3 If Statements

if_ statement : IF, condition, THEN, sequence of statements, elsif_part
repeated, else_part option, END, IF, SEMICOLON.

elsifpart : elsif symbol, condition, THEN, sequence of statements.

else_part : ELSE, sequence of statements.

condition : booleanexpression.

5.4 Case Statements

case-statement : case symbol, expression, IS,
casestatementalternative, case statement alternative repeated,
END, case symbol.

casestatementalternative variant, sequence of statements.

5.5 Loop Statements

loopstatement : loop_prefix option, iteration_scheme option, loop

symbol, sequence of statements, END, loop symbol, loopsimple name
option, SEMICOLON.

reverse : reverse symbol.

loop_prefix : loop_simplename, COLON.

iteration scheme : while symbol, condition; FOR,
loopyarameterspecification.

loopparameter. specification : identifier, IN, reverse option,
discreterange.

5.6 Block Statements

blockstatement : blockprefix option, declare_part option, BEGIN,
sequence of statements, exceptionpart option, END,
block-simple name option, SEMICOLON.

55

. , ._ e ' . "'..,. '',... i ' '''''"" '' ' ,"" .;""""""" - :. €"'," ' ' "' "

J-Orr

block_prefix : block simplename, COLON.

declarepart : declare symbol, declarative_part.

exceptionpart : exception symbol, exceptionhandler,
exception-handler repeated.

5.7 Exit Statements

exitstatement : exit symbol, loop__name option, when__part option,
SEMICOLON.

when__part when symbol, condition.

5.8 Return Statements

returnstatement : return symbol, expression option, SEMICOLON.

5.9 Goto Statements

goto-statement : goto symbol, labelname.

6.1 Subprogram Declarations

subprogram declaration : subprogram-specification, SEMICOLON.

subprogram specification : procedure symbol, identifier, formaljPart
option; function symbol, designator, formalpart option, return
symbol, type mark.

designator identifier; operatorsymbol.

operator symbol : string_literal.

formalyart LPAREN, parameterspecification sequence, RPAREN.

parameterspecification identifier list, COLON, mode, typemark,
assignment option.

mode : IN option, OUT option.

6.3 Subprogram Bodies

subprogram body : subprogramspecification, IS, declarativeart
option, BEGIN, sequence of statements, exception_part, END,
designator option, SEMICOLON.

".o

56

V - - -r'- -V 1.7%a -VV .4..-V T I V1 I4 a 1W .L- NE -Ti

6.4 Subprogram Calls

procedurecallstatement procedurename, actual_parameterpart
option.

function-call : functionname, actual_parameterpart option.

actualparameterpart LPAREN, parameterassociation list, RPAREN.

parameterassociation : formalpart option, actual_parameter.

formalpart : formalparameter, ARROW.

formal-Parameter : parametersimple_name.

actualparameter : expression; variable-name; type mark, LPAREN,
variablename, RPAREN.

7.1 Package Structure

package declaration : packagespecification.

packagespecification : package, identifier, IS,
basicdeclarativeitem option, private_part option, END,
packagesimple name option.

private_part : private symbol, basicdeclarativeitem repeated.

packagebody : PACKAGE, BODY, package_simplename, IS,
declarativepyart option, BEGIN, sequence of statements,
exceptionpart option, END, packagesimple_name option, SEMICOLON.

7.4 Private Type and Deferred Constant Declarations

privatetypedeclaration : TYPE, identifier, discriminantpart option,
IS, limited option, private symbol, SEMICOLON.

deferred constant-declaration identifier list, COLON, constant,
type _mark, SEMICOLON.

8.4 Use Clauses

useclause USE, package name, package name repeated, SEMICOLON.

57
- . * a.~ ~ a*. .. -1

~ * * -~ a ~ - - - - a . a
-. . a . ~ .'a . . -. ~ ~. *. ". 'a 'a ",]

8.5 Renaming Declarations

renaming_declaration : identifier, COLON, type mark, RENAMES,
objectname, SEMICOLON; identifier, exception symbol, RENAMES,
exceptionname, SEMICOLON; PACKAGE, identifier, RENAMES,
packagename, SEMICOLON; subprogram specification, RENAMES,
subprogram or entryname, SEMICOLON.

9.1 Task Specifications and Task Bodies

taskdeclaration : task specification, SEMICOLON.

task-specification : TASK, TYPE option, identifier, ispart option.

ispart : IS, entrydeclaration option, representationclause option,
END, tasksimplename option.

task-body : TASK, BODY, task simplename, IS, declarative__part option,
BEGIN, sequenceofstatements, exceptionpart option, END,
tasksimplename option, SEMICOLON.

9.5 Entries, Entry Calls, and Accept Statements

entrydeclaration : entry symbol, identifier, rangepart option,
formal_part option, SEMICOLON.

entrycallstatement : entryname, actual_parameterjpart option,
SEMICOLON.

accept-statement : accept symbol, entrysimple name, index-Part option,
formalpart option, accept-body option.

entryindex : expression.

rangepart : LPAREN, discrete-range, RPAREN.

index_part : LPAREN, entryindex, RPAREN.

acceptbody : do symbol, sequence of statements, END,
entrysimple name option.

9.6 Delay Statements, Duration, and Time

delaystatement : delay symbol, simple expression, SEMICOLON.

58

• .'-.. ./. ' .-. ° . - . ' '.. . .' '.- . , . . .'- .. . -. ". . -.... ' ,• " .' .' '. ', ". , '.,'..... -• . ., ". "." , o '."-" v ' ' : . , " . .,.., .,, ' . . ' . '

9.7 Select Statements
select statement : selective-wait; conditional_entry_call;

timed entrycall.

9.7.1 Selective Waits

selectivewait : SELECT, selectalternative, or_part option, elsePart
option, END, SELECT, SEMICOLON.

orpart OR, selectalternative.

selectalternative : when_part option, selectivewaitalternative.

whenpart : when symbol, condition, ARROW.

selectivewait_alternative acceptalternative, delayalternative,
terminate-alternative.

accept-alternative accept_statement, sequence of statements option.

delayalternative delay_statement, sequence of statements option.

terminate alternative : terminate symbol, SEMICOLON.

9.7.2 Conditional Entry Calls

conditional entrycall : SELECT, entry__call statement,
optional sequence of statements, ELSE, sequence of statements, END,
SELECT, SEMICOLON.

9.7.3 Timed Entry Calls

timed_entry_.call : SELECT, entrycall statement,
sequence of statements option, OR, delayalternative, END, SELECT,
SEMICOLON.

9.10 Abort Statements

abortstatement : abort symbol, taskname list, SEMICOLON.

10.1 Compilation Units - Library Units

compilation : compilationunit repeated.

compilationunit : contextclause, libraryunit; contextclause,
secondaryunit.

59

* . -.. }.. .. * . .*.**. i.. . . .-. ..-.-.. *. -" i-.. - *. ,. - . -. -- '" ' --- "

• "" ,_''"_'Z .' .'..''. '.''Z % ' _ ",_-" . ', ". ". "" " "" "L'" -" ,.'• .- 4 _ , .4 "- ,* ,"- " °.', ," 5. ' -' .4

1

libraryunit : subprogram declaration; package-declaration;
generic-declaration; generic instantiation; subprogram body.

secondaryunit : libraryunit body; subunit.

library unit body : subprogram body; packagebody.

10.1.1 Context Clauses - With Clauses

contextclause : withpart repeated.

with_part : with_clause, useclause repeated.

withclause : with symbol, unitsimplename list, SEMICOLON.

10.2 Subunits of Compilation Units

body_stub : subprogram specification, IS, separate symbol, SEMICOLON;
PACKAGE, BODY, packagesimple name, IS, separate symbol,
SEMICOLON; TASK, BODY, task_simplename, IS, separate symbol,
SEMICOLON.

subunit : separate symbol, LPAREN, parentunitname, RPAREN,
properbody.

11.1 Exception Declarations

exception declaration identifier list, COLON, exception symbol.

11.2 Exception Handlers
exception-handler : when symbol, exception-choice, otherchoices

option, ARROW, sequence of statements.

other choices : vertical bar symbol, exception choice.

exception-choice : exceptionname; others symbol.

11.3 Raise Statements

raise statement : raise symbol, exception name option, SEMICOLON.

12.1 Generic Declarations

generic-declaration generic specification, SEMICOLON.

60

generic specification : genericformalpart, subprogramspecification;
generic_formalpart, packagespecification.

genericformaljpart : generic symbol, generic_parameterdeclaration
repeated.

generic_parameterdeclaration : identifier list, COLON, generic_mode
option, type mark, assignment option, SEMICOLON; TYPE, identifier,
IS, generic typedefinition, SEMICOLON; private typedeclaration;
with symbol, subprogram specification, sub isjart option.

genericmode IN, OUT option.

sub is_part IS, name; IS, BOX.

generic type_definition : LPAREN, BOX, RPAREN; range symbol, BOX;
digits symbol, BOX; delta symbol, BOX; array type_definition;
access typedefinition.

12.3 Generic Instantiation

genericinstantiation : PACKAGE, identifier, IS, NEW,
genericpackagename, generic-actual-part option, SEMICOLON;
procedure symbol, identifier, IS, NEW, genericprocedurename,
genericactual_part option; FUNCTION, designator, IS, NEW,
genericfunction_name, generic actual_part option, SEMICOLON.

genericactualpart : LPAREN, generic-association list, RPAREN;

genericassociation : genericformal__art option,
genericactual_parameter.

generic_formalpart : genericformalyarameter, ARROW.

genericformaljparameter parameter simple name; operatorsymbol.

genericactualparameter : expression; variablename; subprogram name;
entry-name; typemark.

13.1 Representation Clauses

representationclause : typerepresentationclause; addressclause.

type representationclause : length clause;
enumerationrepresentation clause; record representationclause.

61

13.3 Enumeration Representation Clauses

enumeration representationclause : FOR, type _simplename, USE,
aggregate, SEMICOLON.

13.4 Record Representation Clauses

record representationclause : FOR, typesimple name, USE, RECORD,
alignment clause option, componentclause option, END, RECORD,
SEMICOLON.

alignment clause : AT, mod symbol, static simple expression,
SEMICOLON.

componentclause : componentname, AT, static simple expression,
range symbol, staticrange, SEMICOLON.

13.5 Address Clause

addressclause : FOR, simplename, USE, AT, simple expression,
SEMIOLON.

.
13.8 Machine Code Insertions

codestatement type mark, APOSTROPHE, record-aggregate, SEMICOLON.

7. 1

62

,-.'"'

Appendix B: W-grammar B

Metaproductions

(B.A) CHAR :: graphiccharacter.

(B.B) LETTER :: a; b; c; d; e; f; g; h; i; j; k; 1; m; n; o; p; q; r;
s; t; u; v; w; x; y; z.

(B.C) DIGIT :: 1; 2; 3; 4; 5; 6; 7; 8; 9; 0.

(B.D) NUMBER :: zero; one; two; three; four; five; six; seven; eight;
nine.

(B.E) NOTION :: CHAR; NOTION CHAR.

(B.F) PTY ::

(B.G) NOTETY NOTION; EMPTY.

(B.H) COLLATING SEQUENCE :: Ol234567890abcdefghijklmnopqrstuvwxyz_.

(B.I) IDENTIFIER :: LETTER; IDENTIFIER underscore; IDENTIFIER LETTER;
IDENTIFIER DIGIT.

(B.J) NAME :: name LETTER; NAME name CHAR.

(B.K) LIBRARY
nextentry library entry endlibrary;
nextentry library entry LIBRARY.

(B.L) ID :: library entry.

(B.M) IDS :: id ID; IDS id ID.

(B.N) IDETY :: ID; EMPTY.

(B.O) FORMAL PART :: parameter specification group.

(B.P) TYPE MARK :: type designator.

(B.Q) PSEQUENCE :: parameter specification sequence.

(B.R) DESCRIPTION :: kindof IDENTIFIERI parameter NOTETY return
IDENTIFIER2 CONTENTS.

(B.S) CONTENTS :: contains ID repeated.

(B.T) UNDERSCORE
.

63

...

Hyper-rules

(B.1) graphic-character : basic graphic-character; lower-case symbol;
other-specialcharacter symbol.

(B.2) basicgraphiccharacter : upper case symbol; DIGIT symbol;
special character symbol; space character.

(B.3) basic-character : basicgraphiccharacter; formateffector;

(B.4) upper-case : capital LETTER.

(B.5) specialcharacter : quotation; sharp; ampersand; apostrophe;
left parenthesis; right parenthesis; star; plus; comma;
hyphen; dot; slash; colon; semicolon; less than; equal;
greater than; underline; vertical bar.

(B.6) lower case : letter LETTER.

(B.7) otherspecialcharacter : exclamation mark; dollar; percent;
question mark; commercial at; left square bracket; back-slash;
right square bracket; circumflex; grave accent; left brace;
right brace; tilde.

(B.8) NOTION option : NOTION; EMPTY.

(B.9) NOTION repeated : NOTION repeated, NOTION; NOTION; EMPTY.

(B.1O) NOTION list : NOTION; NOTION list, comma symbol, NOTION.

(B.11) NOTION sequence : NOTION;
NOTION sequence, semicolon symbol, NOTION.

(B.12) NOTION pack : left parenthesis symbol, NOTION list,
right parenthesis symbol.

(B.13) NOTION group : left parenthesis symbol, NOTION sequence,
right parenthesis symbol.

(B.14) library entry : NAME DESCRIPTION.

(B.15) letterordigit : letter LETTER symbol; NUMBER symbol.

(B.16) NOTETY1 print
where NOTETY1 is EMPTY;
NOTETY2 print, underscore symbol,

where NOTETYl is UNDERSCORE NOTETY2;
NOTETY2 print, letter LETTER symbol,

where NOTETYI is LETTER NOTETY2;
NOTETY2 print, DIGIT symbol,

where NOTETYI is DIGIT NOTETY2.

64

U

... -....~~~~~~~~~~~~~~~~~~~.....-..-,--.-...,.-.....-..... :......-.-..-
' " ° ' " '.'- ' " '-'o . " -' " .'.'' . .. _'.F ,,," " " ,' " ".' '," 'P' ' '''., C' -C-.-.

(B.16) true : EMPTY.

(B.17) where NOTETY is NOTETY : true.

(B.18) where NOTION is in NOTETY1 NOTION NOTETY2 : true.

(B.19) where NOTION is not in EMPTY : true.

(B.20) where EMPTY is not in NOTION : true.

(B.21) where NOTETY1 or NOTETY2 where NOTETYl; where NOTETY2.

(B.22) where NOTETY1 and NOTETY2 where NOTETY1, where NOTETY2.

(B.23) where NOTION1 is not in NOTION2
where NOTETYI CHAR1 is NOTION1 and NOTETY2 CHAR2 is NOTION2,

where CHAR1 is not CHAR2 and NOTION1 is not in NOTETY2;
where NOTETY1 CHAR1 is NOTION1 and NOTETY2 CHAR2 is NOTION2,

where NOTETY1 is not in NOTETY2.

(B.24) where NOTION1 and NOTION2 • where NOTION1, where NOTION2.

(B.25) where CHAR1 is not CHAR2
where CHARI precedes CHAR2 in COLLATING SEQUENCE;
where CHAR2 precedes CHAR1 in COLLATING SEQUENCE.

(B.26) where CHAR1 precedes CHAR2 in NOTION
where NOTETYl CHAR1 NOTETY2 CHAR2 NOTETY3 is NOTION.

(B.27) where NOTION1 is not NOTION2 :
where NOTETYL CHARI is NOTION1 and NOTETY2 CHAR2 is NOTION2

and NOTETYl is not NOTETY2;
where NOTETYl CHAR1 is NOTIONI and NOTETY2 CHAR2 is NOTION2

and CHAR1 is not CHAR2.

(B.28) where NOTION1 describes NOTION2
where NOTIONI is NOTION3 NOTETY1,
where NOTION3 is name ALPHA1 NOTION4,
where NOTION2 is ALPHA1 NOTETY2,
where NOTION4 describes NOTETY3.

(B.29) where NOTIONI describes EMPTY
where NOTIONI is kindof NOTION2.

(B.30) where NOTION1 kind NOTION2 :
where NAME kindof NOTION2 parameter NOTETY is NOTIONI.

(B.31) where NOTIONI parameter NOTION2
where NAME kindof NOTETY1 parameter NOTION2 return NOTETY2 is

NOTION1.

.
65

"'" ' "" -

- - ~ w - -K "'T k

(B.32) where NOTION1 return NOTION2 :
where NAME kindof NOTETY1 parameter NOTETY2 return NOTION2

contains NOTETY3 is NOTIONI.

(B.33) where NOTIONI contains NOTION2 V
where NAME kindof NOTETY1 parameter NOTETY2 return NOTION3 is

NOTIONI and NOTETY3 contains NOTION2 NOTETY4 is NOTION3,
where EMPTY is NOTETY4 or contains NOTETY5 is NOTETY4.

(B.34) LIBRARY compilation : LIBRARY compilation unit repeated.

(B.35) LIBRARY compilation unit
LIBRARY context clause, LIBRARY library unit ID;
LIBRARY context clause, LIBRARY secondary unit ID.

(B.36) LIBRARY library unit ID :
LIBRARY subprogram declaration ID;
LIBRARY package declaration ID;
LIBRARY generic declaration ID;
LIBRARY generic instantiation ID;
LIBRARY subprogram body ID, where ID is not in LIBRARY.

(B.37) LIBRARY secondary unit ID
LIBRARY library unit body ID, where ID is in LIBRARY;
LIBRARY subunit ID, where ID is in LIBRARY.

(B.38) library unit body ID : subprogram body ID; package body ID.

(B.39) LIBRARY context clause
LIBRARY IDS with clause LIBRARY IDS use part repeated.

(B.40) LIBRARY IDS use part
use symbol, LIBRARY IDS use clause repeated.

(B.41) LIBRARY IDS with clause
with symbol, LIBRARY IDS with part, SEMICOLON.

(B.42) LIBRARY IDS with part : IDENTIFIER,
where ID describes IDENTIFIER,
where NOTETY1 nextentry ID NOTETY2 is LIBRARY,
where NOTETY3 id ID NOTETY4 is IDS,
LIBRARY NOTETY3 NOTETY4 with part.

(B.43) LIBRARY with part : EMPTY.

(B.44) LIBRARY IDS use clause
use symbol, LIBRARY IDS package list, SEMICOLON.

66r2

!U

(B.45) LIBRARY IDS package : IDENTIFIER,
where ID kind package,
where ID describes IDENTIFIER,
where NOTETYl nextentry ID NOTETY2 is LIBRARY,
where NOTETY3 id ID NOTETY4 is IDS.

(B.46) LIBRARY subprogram declaration ID : subprogram specification ID,
where NOTETYI nextentry ID NOTETY2 is LIBRARY,
where NOTETY3 id ID NOTETY4 is IDS,
LIBRARY NOTETY3 NOTETY4 with part.

(B.47) subprogram specification ID
procedure symbol, IDENTIFIER, FORMAL PART option,

where ID describes IDENTIFIER,
where ID kind procedure,
where ID parameter FORMAL PART;

function symbol, IDENTIFIER, FORMAL PART option,
return symbol, TYPE MARK,
where ID describes IDENTIFIER,
where ID kind function,
where ID parameter FORMAL PART,
where ID return TYPE MARK.

(B.48) LIBRARY subprogram specification
procedure symbol, IDENTIFIER, FORMAL PART option,

LIBRARY validate FORMAL PART;
function symbol, IDENTIFIER, FORMAL PART option,

return symbol, TYPE MARK,
where ID describes TYPE MARK,
where ID kind type,
where ID is in LIBRARY.

(B.49) LIBRARY validate FORMAL PART
where (PSEQUENCE) is FORMAL PART,
LIBRARY validate PSEQUENCE.

(B.50) LIBRARY validate PSEQUENCEl
where PSEQUENCE2 semicolon PSEQUENCE3 is PSEQUENCE1,

where PSEQUENCE3 is parameter specification,
LIBRARY validate PSEQUENCE2,
LIBRARY validate PSEQUENCE3;

where PSEQUENCE is parameter specification,
where IDENTIFIER list colon mode TYPE MARK NOTETYl is

PSEQUENCE,
where ID describes TYPE MARK,
where NOTETY2 nextentry ID NOTETY3 is LIBRARY,
where ID kind type,
where NOTETYl is TYPE MARK assignment.

(B.51) parameter specification
*.. IDENTIFIER list, colon symbol, mode, TYPE MARK,

TYPE MARK assignment option.

67
p

....... .- * . A

(B.52) mode : in symbol option, out symbol option.

(B.53) LIBRARY1 subunit ID r
separate symbol, left paren symbol, IDENTIFIER,
right paren symbol, LIBRARY2 proper body ID2,
where ID contains ID2,
where ID describes IDENTIFIER,
where LIBRARY2 ID NOTETY is LIBRARY1.

(B.54) proper body : subprogram body; package body; task body.

.

..

4..

S"..

68,

Bibliography

1. Bedford Computer Center. BCC UNIX New User's Guide. MITRE
Corporation, Bedford MA, 27 August 1984.

2. Booth, K. H. . "Meta Language," Encyclopedia of Computer
Science, edited by Anthony Ralston. New York: Van Nostrand
Reinhold, 1976.

3. Cameron, Robert D. and M. Robert Ito. "Grammar-Based Definition of
Metaprogramming Systems," ACM Transactions on Programming and
Systems, 6: 20-54 (January 1984).

4. Cleaveland, J. Craig and Robert C. Uzgalis. Grammars for
Programming Languages. New York: Elsevier North-Holland, 1977.

5. Department of Defense. Ada Programming Language.
ANSI/MIL-STD 1815A. Philadelphia: Naval Publications and Forms
Center, 22 January 1983.

6. Fleck, A. C. and R. S. Limaye. "Formal Semantics and Abstract
Properties of String Pattern Operations and Extended Formal
Language Description Mechanisms," SIAM Journal on Computing,
12: 166-168 (February 1983).

7. Hopcroft, John E. and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation. Reading MA:
Addison-Wesley Publishing Company, 1979.

8. McCracken, D. D. "Backus-Naur Form," Encyclopedia of Computer

Science, edited by Anthony Ralston. New York: Van Nostrand
Reinhold, 1976.

9. Reps, Thomas et al. "Incremental Context-Dependent Analysis for
Language-Based Editors," ACM Transactions on Programming
Languages and Systems, 5: 449-477 (July 1983).

10. Sethi, Ravi. "Control Flow Aspects of Semantics-Directed
Compiling," ACM Transactions on Programming Languages and
Systems, 5: 554-595 (October 1983).

11. Tanaka, Eiichi and King-Sun Fu. "Correction to Error-Correcting
Parsers for Formal Languages," IEEE Transactions on Computers,
C-31: 327-328 (April 1972).

12. --. "Error-Correcting Parsers for Formal Languages," IEEE
Transactions on Computers, C-27: 605-616 (July 1978).

13. Tennent, R. D. "The Denotational Semantics of Programmirg
Languages," Communications of the ACM, 19: 437-453 (August
1976).

69

__

° 'J ' - '= '* : m =- = : " " " r
.

, r " ,

%1 14. Uhl, Jurgen et al. An Attribute Grammar for the Semantic
Analysis of Ada. Berlin: Springer-Verlag, 1982.

15. Wegner, P. "Vienna Definition Language," Encyclopedia of
Computer Science, edited by Anthony Ralston. New York: Van
Nostrand Reinhold, 1976.

16. Woffinden, Kaj Duard S. Department of Electrical Engineering and
Computer Science. Personal Interview. Air Force Institute of
Technology, Wright-Patterson AFB OH, 8 February 1986.

.J

70

A 21.

VITA

First Lieutenant Roy A. Flowers was born on 6 July 1957 at Johnson

AFB, Japan. He graduated from Waite High School in Toledo, Ohio, in

1975 and attended Mount Vernon Nazarene College until May 1978 when he

enlisted in the USAF. He completed basic training and worked as a

computer programmer at the Air Force Manpower and Personnel Center,

Randolph AFB, TX until August 1980. In February 1980 he was selected to

participate in the Airman Education and Commissioning Program at the

Ohio State University from which he received the degree of Bachelor of

Science in Electrical Engineering in December 1982. He completed OTS

and received a commission in April 1983. He then served as a computer

engineer at Electronic Systems Division, Hanscom AFB, MA until entering

the School of Engineering, Air Force Institute of Technology, in June
1985. He married the former Nancy Kean in January 1977 and they have

three children: Royanna, Ryan, and Heather.

Permanent address: 178 Fornoff Road

Columbus, Ohio 43207

711

71

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEAWA 7n ~)

I Form Approved
REPORT DOCUMENTATION PAGE OM9No. 0704-0188

,"'. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCE/ENG/86D-9
68. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(tf applicable)

School of Engineerin2 J AFITiENG
6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
Wrioht-Patterson AFB, Ohio 45433

Sa. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION j(if applicable)

Sc. ADDRESS (City, State, and ZIP Code) 10, SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT ITASK IWORK UNIT
ELEMENT NO NO NO ACCESSION NO

1 I. TITLE (Include Security Classification)

SW.-GRAMMAR FOR ADA

PERSONAL AUTHOR(S)
IRnv A - F1nwpr-, R -. 9__. - ~ F.Lt 1T0,AP

13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNTFROM ____TO

Mq Thp-oi -c FO TO 1QR])Pmhpr 79

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Ada, Grammars, Semantics, Syntax, Context Sensitive Grammars,

nQ n2 Phrase Structure Grammars

19. ABSTRACT (Continue on reverse if necessary and identify by block number) AVOwvd Ici pLic reloas.: LAW AFh 1W)-

LT E. WOLAVERThesis Chairman: James W. Howatt, Captain, USAF D , .1 (-1 PT, I-Ro,-.L=IP.t
Assistant Professor of Computer Systems A;T ice1:, 1.- 1! '- , ,z (A41Jt

This thesis explores the formal definition of the syntax and static
semantics of the Ada programming language. Several notational forms
were compared and the particular notational form chosen is a double
level grammar called the the W-grammar. W-grammars were first used in
the formal definition of Algol 68. Two W-grammars are presented. The
first W-grammar is a translation of the modified BNF notation used in
the Ada Language Reference Manual, and the second demonstrates the
description of Ada's static semantics in W-grammar format.

A. DISTRIBUTION/AVAILABILITY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION
)UNCLASSIFIEDUNLIMITED 0 SAME AS RPT EC DTiC USERS_ ITNrI.ASS TIEI

I U SEINAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22c OFFICE SYMBOLin- MAP ~~I UNI-. Aq 11FIEDT/ti

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED"-V -- - * . •- ' - *- "" . "' - - " -. . - -I . - I - - "

j .1

'.

